Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/2993
Full metadata record
DC FieldValueLanguage
dc.creatorAleksić, Danijelen_US
dc.date.accessioned2025-12-09T08:02:34Z-
dc.date.available2025-12-09T08:02:34Z-
dc.date.issued2023-
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/2993-
dc.description.abstractLittle’s MCAR test is a very popular method for determining if data is missing completely at random (MCAR). A test for MCAR is constructed in the special case of monotone missing data. The test is based on the estimator of the covariation of the data itself and the response indicator of complete data columns. A connection between Little’s and novel statistics is established and those are compared from various points of view.en_US
dc.language.isoenen_US
dc.publisherECOSTA ECONOMETRICS AND STATISTICSen_US
dc.rightsopenAccessen_US
dc.source16th International Conference of the ERCIM (European Research Consortium for Informatics and Mathematics) Working Group on Computational and Methodological Statistics (CMStatistics 2023), Book of Abstractsen_US
dc.titleA new approach to Little's MCAR testen_US
dc.typeconferenceObjecten_US
dc.citation.epage43en_US
dc.citation.spage43en_US
dc.type.versionpublishedVersionen_US
dc.identifier.urlhttps://www.cmstatistics.org/CMStatistics2023/docs/BoA.pdf?20231128014621-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.openairetypeconferenceObject-
Appears in Collections:Radovi istraživača / Researchers’ publications
Show simple item record

Page view(s)

8
checked on Dec 28, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.