Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/307
Full metadata record
DC FieldValueLanguage
dc.creatorStojanović, Milica
dc.date.accessioned2023-05-12T09:58:07Z-
dc.date.available2023-05-12T09:58:07Z-
dc.date.issued2005
dc.identifier.issn0025-5165
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/307-
dc.description.abstractTwo algorithms for triangulating polyhedra, which give the number of tetrahedra depending linearly on the number of vertices, are discussed. Since the smallest possible number of tetrahedra necessary to triangulate given polyhedra is of interest, for the first–"Greedy peeling" algorithm, we give a better estimation of the greatest number of tetrahedra (3n - 20 instead of 3n - 11), while for the second one–"cone triangulation", we discuss cases when it is possible to improve it in such a way as to obtain a smaller number of tetrahedra.en
dc.publisherDruštvo matematičara Srbije, Beograd
dc.rightsopenAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceMatematički vesnik
dc.subjecttriangulation of polyhedraen
dc.subjectminimal triangulationen
dc.titleAlgorithms for triangulating polyhedra into a small number of tetrahedraen
dc.typearticle
dc.rights.licenseBY
dc.citation.epage9
dc.citation.issue1-2
dc.citation.other57(1-2): 1-9
dc.citation.spage1
dc.citation.volume57
dc.identifier.fulltexthttp://prototype2.rcub.bg.ac.rs/bitstream/id/966/303.pdf
dc.identifier.rcubconv_6
dc.identifier.scopus2-s2.0-29244460949
dc.type.versionpublishedVersion
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Radovi istraživača / Researchers’ publications
Files in This Item:
File Description SizeFormat 
303.pdf367.87 kBAdobe PDFThumbnail
View/Open
Show simple item record

SCOPUSTM   
Citations

6
checked on Nov 17, 2025

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons