Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/3095
Full metadata record
DC FieldValueLanguage
dc.creatorZukanović, Milicaen_US
dc.creatorRadosavčević, Aleksaen_US
dc.creatorPoledica, Anaen_US
dc.creatorMilošević, Pavleen_US
dc.creatorLuković, Ivanen_US
dc.date.accessioned2025-12-15T11:50:44Z-
dc.date.available2025-12-15T11:50:44Z-
dc.date.issued2025-
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/3095-
dc.description.abstractHedge funds (HF) are actively managed investment vehicles employing diverse and often complex strategies. Accurate returns forecasting is essential for optimizing their performance and managing risk. This paper investigates the application of nonlinear dimensionality reduction (DR) methods in forecasting HF strategy performance, building upon prior work in financial time series analysis. We evaluate the effectiveness of Kernel Principal Component Analysis (KPCA), t-Distributed Stochastic Neighbor Embedding (t-SNE), Uniform Manifold Approximation and Projection (UMAP), and autoencoders on predictive performance of machine learning models. The extracted features are fed into several forecasting models, Support Vector Machine (SVM) with linear and nonlinear kernels, Neural Network (NN), and Extreme Gradient Boosting (XGB), to predict returns of five diverse HF investment strategies: Commodity Trading Advisors, Equity Long Short, Equity Market Neutral, Fixed Income Arbitrage, and Global Macro. The results demonstrate that nonlinear DR methods, particularly autoencoders, and KPCA combined with NN, significantly outperform other techniques. Our findings highlight the value of nonlinear transformations in enhancing predictive accuracy for HF returns time series.en_US
dc.language.isoenen_US
dc.rightsopenAccessen_US
dc.sourceIn M. Bolanowski, M. Ganzha, L. Maciaszek, M. Paprzycki, & D. Ślęzak (Eds.), 2025 20th Conference on Computer Science and Intelligence Systems (FedCSIS) (pp. 411-416). Piscataway, NJ: IEEE. DOI: 10.15439/2025F3970 ISBN:978-83-973291-6-4 held: Kraków, Poland, September 14-17, 2025en_US
dc.subjectdimensionality reductionen_US
dc.subjecthedge fundsen_US
dc.subjectPCAen_US
dc.subjectKPCAen_US
dc.subjectt-SNEen_US
dc.subjectUMAPen_US
dc.subjectautoencodersen_US
dc.titleEvaluating Effectiveness of Nonlinear Feature Extraction in Hedge Funds’ Returns Forecastingen_US
dc.typeconferenceObjecten_US
dc.identifier.doi10.15439/2025F3970-
dc.type.versionpublishedVersionen_US
item.fulltextWith Fulltext-
item.openairetypeconferenceObject-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
Appears in Collections:Radovi istraživača / Researchers’ publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.