Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/3126
Full metadata record
DC FieldValueLanguage
dc.creatorGaćeša, Isidoraen_US
dc.creatorJosipović, Anaen_US
dc.creatorDžamić, Andrijanaen_US
dc.date.accessioned2025-12-17T06:49:59Z-
dc.date.available2025-12-17T06:49:59Z-
dc.date.issued2024-06-
dc.identifier.isbn978-86-7680-464-1-
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/3126-
dc.description.abstractRapid changes in technology and consumer preferences continue to change the way things are done. As a result, all communication flows should include strategies to adapt to the way things are done in a digital environment. There is a lot of data in the digital space that describes the behavior of people in the market and influences the best strategies to follow for success. Current research determines how linear programming can be applied for solving problems in digital marketing to find optimal solutions for the best marketing results. Platforms like Facebook, Instagram, LinkedIn and TikTok significantly shape the way people relate to the content created by the marketing team. By analyzing some of the trends established by using such platforms, it is possible to arrive at a more effective content planning that is in line with the market trend. Our research highlights the importance of customized content and optimal placement in maximizing marketing effectiveness in the digital domain.en_US
dc.language.isoenen_US
dc.rightsopenAccessen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.sourceXIX International Symposium - SymOrg 2024 - Unlocking the hidden potentials of organization through merging of humans and digitalsen_US
dc.subjectdigital marketingen_US
dc.subjectsocial mediaen_US
dc.subjectlinear programmingen_US
dc.subjectportfolioen_US
dc.subjectschedulingen_US
dc.titleTwo-stage framework for digital content optimization and schedulingen_US
dc.typeconferenceObjecten_US
dc.rights.licenseAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.citation.epage311en_US
dc.citation.spage306en_US
dc.type.versionpublishedVersionen_US
item.fulltextWith Fulltext-
item.openairetypeconferenceObject-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
Appears in Collections:Radovi istraživača / Researchers’ publications
Files in This Item:
File Description SizeFormat 
SymOrg_2024.pdf249.04 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons