Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/364
Full metadata record
DC FieldValueLanguage
dc.creatorĆirić, Ljubomir B.
dc.creatorNikolić, Nebojša
dc.creatorUme, Jeong Sheok
dc.date.accessioned2023-05-12T10:01:05Z-
dc.date.available2023-05-12T10:01:05Z-
dc.date.issued2006
dc.identifier.issn0236-5294
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/364-
dc.description.abstractRecently, Pathak [13] has made an extension of the notion of compatibility to weak compatibility, and extended the coincidence theorem for compatible mappings in Kaneko and Sessa [11] to weakly compatible mappings [13]. In the present paper, we define a new class of weakly compatible mappings (Definition 4) and prove some common fixed point theorems for these mappings, which satisfy Condition (2) below. Although our main theorem is formulated for weakly compatible mappings, its corresponding formulation for commutative mappings is also a new result, thus presenting a generalization of some theorems of Fisher, Das and Naik, Khan and Kubiaczyk, Reich, Ciric and Rhoades and Watson.en
dc.publisherSpringer, Dordrecht
dc.rightsrestrictedAccess
dc.sourceActa Mathematica Hungarica
dc.subjectweakly compatible mappingsen
dc.subjectstationary pointen
dc.subjectquasi-contraction mappingen
dc.titleCommon fixed point theorems for weakly compatible quasi contraction mappingsen
dc.typearticle
dc.rights.licenseARR
dc.citation.epage267
dc.citation.issue4
dc.citation.other113(4): 257-267
dc.citation.rankM23
dc.citation.spage257
dc.citation.volume113
dc.identifier.doi10.1007/s10474-006-0103-z
dc.identifier.rcubconv_1162
dc.identifier.scopus2-s2.0-33751193226
dc.identifier.wos000242143800001
dc.type.versionpublishedVersion
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextrestricted-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Radovi istraživača / Researchers’ publications
Files in This Item:
File Description SizeFormat 
360.pdf
  Restricted Access
182.9 kBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

5
checked on Nov 17, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.