Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/428
Title: On a Littlewood-Paley type inequality
Authors: Đorđević, Olivera 
Pavlović, Miroslav
Keywords: Littlewood-Paley inequalities;harmonic functions in R-N
Issue Date: 2007
Publisher: Amer Mathematical Soc, Providence
Abstract: The following is proved: If u is a function harmonic in the unit ball B subset of R-N and if 0 LT p LT = 1, then the inequality integral(partial derivative B) u*( y)(p) d sigma LT = C-p,C-N (vertical bar u( 0)|(p) + integral(B) ( 1 -vertical bar x vertical bar)(p-1) vertical bar del u( x)vertical bar p dV (x)) holds, where u* is the nontangential maximal function of u. This improves a recent result of Stoll. This inequality holds for polyharmonic and hyperbolically harmonic functions as well.
URI: https://rfos.fon.bg.ac.rs/handle/123456789/428
ISSN: 0002-9939
Appears in Collections:Radovi istraživača / Researchers’ publications

Files in This Item:
File Description SizeFormat 
424.pdf
  Restricted Access
139.1 kBAdobe PDFView/Open    Request a copy
Show full item record

SCOPUSTM   
Citations

7
checked on Nov 17, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.