Please use this identifier to cite or link to this item:
https://rfos.fon.bg.ac.rs/handle/123456789/469Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.creator | Arsenović, Miloš | |
| dc.creator | Todorčević, Vesna | |
| dc.creator | Mateljević, Miodrag | |
| dc.date.accessioned | 2023-05-12T10:06:30Z | - |
| dc.date.available | 2023-05-12T10:06:30Z | - |
| dc.date.issued | 2008 | |
| dc.identifier.issn | 1239-629X | |
| dc.identifier.uri | https://rfos.fon.bg.ac.rs/handle/123456789/469 | - |
| dc.description.abstract | We show that Lipschitz continuity of phi: Sn - 1 -> R-n implies Lipschitz continuity of its harmonic extension u = P[phi]: B-n -> R-n, provided u is a quasiregular map. | en |
| dc.publisher | Suomalainen Tiedeakatemia, Helsinki | |
| dc.rights | restrictedAccess | |
| dc.source | Annales Academiae Scientiarum Fennicae-Mathematica | |
| dc.subject | quasiregular mappings | en |
| dc.subject | Lipschitz spaces | en |
| dc.subject | harmonic mappings | en |
| dc.title | On Lipschitz continuity of harmonic quasiregular maps on the unit ball in R-n | en |
| dc.type | article | |
| dc.rights.license | ARR | |
| dc.citation.epage | 318 | |
| dc.citation.issue | 1 | |
| dc.citation.other | 33(1): 315-318 | |
| dc.citation.rank | M22 | |
| dc.citation.spage | 315 | |
| dc.citation.volume | 33 | |
| dc.identifier.rcub | conv_1187 | |
| dc.identifier.wos | 000253136600021 | |
| dc.type.version | publishedVersion | |
| item.cerifentitytype | Publications | - |
| item.fulltext | No Fulltext | - |
| item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
| item.grantfulltext | none | - |
| item.openairetype | article | - |
| Appears in Collections: | Radovi istraživača / Researchers’ publications | |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.