Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/479
Full metadata record
DC FieldValueLanguage
dc.creatorStanojević, Milan
dc.creatorVujošević, Mirko
dc.creatorStanojević, Bogdana
dc.date.accessioned2023-05-12T10:07:01Z-
dc.date.available2023-05-12T10:07:01Z-
dc.date.issued2008
dc.identifier.issn1841-9836
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/479-
dc.description.abstractThe number of efficient points in criteria space of multiple objective combinatorial optimization problems is considered in this paper. It is concluded that under certain assumptions, that number grows polynomially although the number of Pareto optimal solutions grows exponentially with the problem size. In order to perform experiments, an original algorithm for obtaining all efficient points was formulated and implemented for three classical multiobjective combinatorial optimization problems. Experimental results with the shortest path problem, the Steiner tree problem on graphs and the traveling salesman problem show that the number of efficient points is much lower than a polynomial upper bound.en
dc.publisherCCC Publ-Agora Univ, Bihor
dc.rightsopenAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.sourceInternational Journal of Computers, Communications and Control
dc.subjectmultiple objective optimizationen
dc.subjectcomplexity of computationen
dc.subjectcombinatorial optimizationen
dc.titleComputation Results of Finding All Efficient Points in Multiobjective Combinatorial Optimizationen
dc.typearticle
dc.rights.licenseBY-NC
dc.citation.epage383
dc.citation.issue4
dc.citation.other3(4): 374-383
dc.citation.spage374
dc.citation.volume3
dc.identifier.doi10.15837/ijccc.2008.4.2405
dc.identifier.fulltexthttp://prototype2.rcub.bg.ac.rs/bitstream/id/1034/475.pdf
dc.identifier.rcubconv_1199
dc.identifier.scopus2-s2.0-56549097876
dc.identifier.wos000260214800006
dc.type.versionpublishedVersion
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Radovi istraživača / Researchers’ publications
Files in This Item:
File Description SizeFormat 
475.pdf127.64 kBAdobe PDFThumbnail
View/Open
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 17, 2025

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons