Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/507
Full metadata record
DC FieldValueLanguage
dc.creatorĐorđević, Olivera
dc.creatorPavlović, Miroslav
dc.date.accessioned2023-05-12T10:08:27Z-
dc.date.available2023-05-12T10:08:27Z-
dc.date.issued2008
dc.identifier.issn0362-1588
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/507-
dc.description.abstractWe prove some quantitative versions of the Thorp-Whitley maximum modulus principle as well as extend to vector-valued functions a theorem of Dynkonov [3] on Lipschitz conditions For the modulus of an analytic functions.en
dc.relationinfo:eu-repo/grantAgreement/MESTD/MPN2006-2010/144010/RS//
dc.rightsrestrictedAccess
dc.sourceHouston Journal of Mathematics
dc.subjectmoduli of c-convexityen
dc.subjectmaximum principleen
dc.subjectLipschitz conditionsen
dc.subjectComplex uniform convexityen
dc.titleLipschitz conditions for the norm of a vector valued analytic functionen
dc.typearticle
dc.rights.licenseARR
dc.citation.epage826
dc.citation.issue3
dc.citation.other34(3): 817-826
dc.citation.rankM23
dc.citation.spage817
dc.citation.volume34
dc.identifier.rcubconv_3021
dc.identifier.scopus2-s2.0-55949135519
dc.identifier.wos000261687800013
dc.type.versionpublishedVersion
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Radovi istraživača / Researchers’ publications
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 17, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.