Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/655
Full metadata record
DC FieldValueLanguage
dc.creatorĆirić, Ljubomir B.
dc.creatorHe, Huimin
dc.creatorChen, Rudong
dc.creatorLazović, Rade
dc.date.accessioned2023-05-12T10:16:07Z-
dc.date.available2023-05-12T10:16:07Z-
dc.date.issued2010
dc.identifier.issn0020-7160
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/655-
dc.description.abstractLet E be a real reflexive Banach space, which admits a weakly sequentially continuous duality mapping of E into E*, and C be a nonempty closed convex subset of E. Let {T (t) : t >= 0} be a semigroup of nonexpansive self-mappings on C such that F := boolean AND(t >= 0)Fix(T(t)) not equal empty set, where Fix(T(t)) = {x is an element of C: x = T(t)x}, and let f: C -> C be a fixed contractive mapping. If {alpha(n)}, {beta(n)}, {t(n)} satisfy some appropriate conditions, then a iterative process {x(n)} in C, defined by x(n) = alpha(n)y(n) + (1 - alpha(n))T(t(n))x(n), y(n) = beta(n)f(x(n-1)) + (1 - beta(n))x(n-1) converges strongly to q is an element of F, and q is the unique solution in F to the following variational inequality: LT (I - f)q, j(q - u)> LT = 0 for all u is an element of F. Our results extend and improve corresponding ones of Suzuki [T. Suzuki, On strong convergence to common fixed points of nonexpansive semigroups in Hilbert spaces, Proc. Amer. Math. Soc. 131 (2002), pp. 2133-2136.], Xu [H.K. Xu, A strong convergence theorem for contraction semigroups in Banach spaces, Bull. Aust. Math. Soc. 72 (2005), pp. 371-379.] and Chen and He [R. D. Chen and H. He, Viscosity approximation of common fixed points of nonexpansive semigroups in Banach space, Appl. Math. Lett. 20 (2007), pp. 751-757.].en
dc.publisherTaylor & Francis Ltd, Abingdon
dc.relationNational Science Foundation of China [10771050]
dc.rightsrestrictedAccess
dc.sourceInternational Journal of Computer Mathematics
dc.subjectstrong convergenceen
dc.subjectnonexpansive semigroupsen
dc.subjectimpreflexive Banach spaceen
dc.subjectfixed pointen
dc.subjectcontraction mappingen
dc.titleStrong convergence theorems for a semigroup of nonexpansive mappings in Banach spacesen
dc.typearticle
dc.rights.licenseARR
dc.citation.epage2425
dc.citation.issue11
dc.citation.other87(11): 2419-2425
dc.citation.rankM23
dc.citation.spage2419
dc.citation.volume87
dc.identifier.doi10.1080/00207160902887515
dc.identifier.rcubconv_1283
dc.identifier.scopus2-s2.0-77956555935
dc.identifier.wos000281701200004
dc.type.versionpublishedVersion
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypearticle-
Appears in Collections:Radovi istraživača / Researchers’ publications
Files in This Item:
File Description SizeFormat 
651.pdf
  Restricted Access
4.12 MBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 17, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.