Please use this identifier to cite or link to this item:
https://rfos.fon.bg.ac.rs/handle/123456789/655Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.creator | Ćirić, Ljubomir B. | |
| dc.creator | He, Huimin | |
| dc.creator | Chen, Rudong | |
| dc.creator | Lazović, Rade | |
| dc.date.accessioned | 2023-05-12T10:16:07Z | - |
| dc.date.available | 2023-05-12T10:16:07Z | - |
| dc.date.issued | 2010 | |
| dc.identifier.issn | 0020-7160 | |
| dc.identifier.uri | https://rfos.fon.bg.ac.rs/handle/123456789/655 | - |
| dc.description.abstract | Let E be a real reflexive Banach space, which admits a weakly sequentially continuous duality mapping of E into E*, and C be a nonempty closed convex subset of E. Let {T (t) : t >= 0} be a semigroup of nonexpansive self-mappings on C such that F := boolean AND(t >= 0)Fix(T(t)) not equal empty set, where Fix(T(t)) = {x is an element of C: x = T(t)x}, and let f: C -> C be a fixed contractive mapping. If {alpha(n)}, {beta(n)}, {t(n)} satisfy some appropriate conditions, then a iterative process {x(n)} in C, defined by x(n) = alpha(n)y(n) + (1 - alpha(n))T(t(n))x(n), y(n) = beta(n)f(x(n-1)) + (1 - beta(n))x(n-1) converges strongly to q is an element of F, and q is the unique solution in F to the following variational inequality: LT (I - f)q, j(q - u)> LT = 0 for all u is an element of F. Our results extend and improve corresponding ones of Suzuki [T. Suzuki, On strong convergence to common fixed points of nonexpansive semigroups in Hilbert spaces, Proc. Amer. Math. Soc. 131 (2002), pp. 2133-2136.], Xu [H.K. Xu, A strong convergence theorem for contraction semigroups in Banach spaces, Bull. Aust. Math. Soc. 72 (2005), pp. 371-379.] and Chen and He [R. D. Chen and H. He, Viscosity approximation of common fixed points of nonexpansive semigroups in Banach space, Appl. Math. Lett. 20 (2007), pp. 751-757.]. | en |
| dc.publisher | Taylor & Francis Ltd, Abingdon | |
| dc.relation | National Science Foundation of China [10771050] | |
| dc.rights | restrictedAccess | |
| dc.source | International Journal of Computer Mathematics | |
| dc.subject | strong convergence | en |
| dc.subject | nonexpansive semigroups | en |
| dc.subject | impreflexive Banach space | en |
| dc.subject | fixed point | en |
| dc.subject | contraction mapping | en |
| dc.title | Strong convergence theorems for a semigroup of nonexpansive mappings in Banach spaces | en |
| dc.type | article | |
| dc.rights.license | ARR | |
| dc.citation.epage | 2425 | |
| dc.citation.issue | 11 | |
| dc.citation.other | 87(11): 2419-2425 | |
| dc.citation.rank | M23 | |
| dc.citation.spage | 2419 | |
| dc.citation.volume | 87 | |
| dc.identifier.doi | 10.1080/00207160902887515 | |
| dc.identifier.rcub | conv_1283 | |
| dc.identifier.scopus | 2-s2.0-77956555935 | |
| dc.identifier.wos | 000281701200004 | |
| dc.type.version | publishedVersion | |
| item.cerifentitytype | Publications | - |
| item.fulltext | With Fulltext | - |
| item.grantfulltext | restricted | - |
| item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
| item.openairetype | article | - |
| Appears in Collections: | Radovi istraživača / Researchers’ publications | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 651.pdf Restricted Access | 4.12 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.