Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/747
Full metadata record
DC FieldValueLanguage
dc.creatorArsenović, Miloš
dc.creatorTodorčević, Vesna
dc.creatorVuorinen, Matti
dc.date.accessioned2023-05-12T10:20:50Z-
dc.date.available2023-05-12T10:20:50Z-
dc.date.issued2011
dc.identifier.issn1029-242X
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/747-
dc.description.abstractWe prove that for harmonic quasiconformal mappings alpha-Holder continuity on the boundary implies alpha-Holder continuity of the map itself. Our result holds for the class of uniformly perfect bounded domains, in fact we can allow that a portion of the boundary is thin in the sense of capacity. The problem for general bounded domains remains open.en
dc.publisherSpringer International Publishing Ag, Cham
dc.relationM144010, M174024]
dc.relationAcademy of Finland [2600066611]
dc.rightsopenAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceJournal of Inequalities and Applications
dc.subjectquasi-conformal mapsen
dc.subjectharmonic mappingsen
dc.subjectH?o?lder continuityen
dc.titleHolder continuity of harmonic quasiconformal mappingsen
dc.typearticle
dc.rights.licenseBY
dc.citation.rankM22
dc.identifier.doi10.1186/1029-242X-2011-37
dc.identifier.fulltexthttp://prototype2.rcub.bg.ac.rs/bitstream/id/1156/743.pdf
dc.identifier.rcubconv_1385
dc.identifier.scopus2-s2.0-84868123182
dc.identifier.wos000301726600001
dc.type.versionpublishedVersion
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.openairetypearticle-
Appears in Collections:Radovi istraživača / Researchers’ publications
Files in This Item:
File Description SizeFormat 
743.pdf314.31 kBAdobe PDFThumbnail
View/Open
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 17, 2025

Download(s)

4
checked on Dec 28, 2025

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons