Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/851
Full metadata record
DC FieldValueLanguage
dc.creatorJovanović, Miloš
dc.creatorVukićević, Milan
dc.creatorMilovanović, Miloš
dc.creatorMinović, Miroslav
dc.date.accessioned2023-05-12T10:26:09Z-
dc.date.available2023-05-12T10:26:09Z-
dc.date.issued2012
dc.identifier.issn1875-6891
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/851-
dc.description.abstractIn this research we applied classification models for prediction of students' performance, and cluster models for grouping students based on their cognitive styles in e-learning environment. Classification models described in this paper should help: teachers, students and business people, for early engaging with students who are likely to become excellent on a selected topic. Clustering students based on cognitive styles and their overall performance should enable better adaption of the learning materials with respect to their learning styles. The approach is tested using well-established data mining algorithms, and evaluated by several evaluation measures. Model building process included data preprocessing, parameter optimization and attribute selection steps, which enhanced the overall performance. Additionally we propose a Moodle module that allows automatic extraction of data needed for educational data mining analysis and deploys models developed in this study.en
dc.publisherAtlantis Press, Paris
dc.relationinfo:eu-repo/grantAgreement/MESTD/Integrated and Interdisciplinary Research (IIR or III)/47003/RS//
dc.relationEuropean Commission [519141-LLP-1-2011-1-ES-KA3-KA3MP]
dc.rightsopenAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.sourceInternational Journal of Computational Intelligence Systems
dc.subjectstudentsen
dc.subjectpredictionen
dc.subjectperformanceen
dc.subjectMoodleen
dc.subjecteducational data miningen
dc.subjectclusteringen
dc.subjectclassificationen
dc.titleUsing data mining on student behavior and cognitive style data for improving e-learning systems: a case studyen
dc.typearticle
dc.rights.licenseBY-NC
dc.citation.epage610
dc.citation.issue3
dc.citation.other5(3): 597-610
dc.citation.rankM22
dc.citation.spage597
dc.citation.volume5
dc.identifier.doi10.1080/18756891.2012.696923
dc.identifier.fulltexthttp://prototype2.rcub.bg.ac.rs/bitstream/id/1195/847.pdf
dc.identifier.rcubconv_1416
dc.identifier.scopus2-s2.0-84862177782
dc.identifier.wos000304476000017
dc.type.versionpublishedVersion
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Radovi istraživača / Researchers’ publications
Files in This Item:
File Description SizeFormat 
847.pdf992.08 kBAdobe PDFThumbnail
View/Open
Show simple item record

SCOPUSTM   
Citations

66
checked on Nov 17, 2025

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons