Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/96
Title: Logički pristup modelovanju sličnosti
A logic-based approach to similarity modeling
Authors: Poledica, Ana
Contributors: Petrović, Bratislav
Martić, Milan
Radojević, Dragan
Keywords: parametarske mere sličnosti;modelovanje sličnosti;logičke mere sličnosti;klasifikacija;klasifikacija zasnovana na sličnosti;interpolativna Bulova algebra;similarity-based classification;similarity modeling;parameterized similarity measures;logic-based similarity measures;interpolative Boolean algebra;classification
Issue Date: 2016
Publisher: Univerzitet u Beogradu, Fakultet organizacionih nauka
Abstract: U ovoj doktorskoj disertaciji uveden je logički pristup modelovanju sličnosti koji je zasnovan na interpolativnoj Bulovoj algebri. Za merenje sličnosti, predložene su nove interpretabilne logičke mere, parametarske i neparametarske, kao i deskriptivni operator agegacije – logička agregacija. Pored pružanja teorijske osnove, u ovom istraživanju posebna pažnja je posvećena empirijskoj analizi. U svrhu validacije definisanih mera uvedena je logička klasifikacija zasnovana na IBA sličnosti. Za sve uvedene mere izvršena je evaluacija i poređenje na realnim podacima iz domena medicine, gde je pokazano da uvođenje parametara unapređuje rezultate klasifikacije. Na kraju su prikazane mogućnosti za konstruisanje logičkih klasifikatora zasnovanih na ekspertskim funkcijama sličnosti na problemu predviđanja bankrotstva preduzeća.
In this doctoral thesis, a logical approach to similarity modeling based on interpolative Boolean algebra is introduced. Novel interpretable logical measures, both nonparametric and parametrized, are introduced for measuring similarity together with logical aggregation as a descriptive aggregation operator. Besides the theоretical background, in this research special attention is devoted to empirical analysis. For validation purposes, logical classification based on IBA similarity is introduced. Defined logical measures are evaluated and compared in the case of medical data, and it is shown that parameterized measures improve classification results. Finally, the benefits of logic-based classifiers with expert similarity functions are presented on the problem of corporate bankruptcy prediction.
URI: http://eteze.bg.ac.rs/application/showtheses?thesesId=4103
https://nardus.mpn.gov.rs/handle/123456789/6879
https://fedorabg.bg.ac.rs/fedora/get/o:13685/bdef:Content/download
http://vbs.rs/scripts/cobiss?command=DISPLAY&base=70036&RID=515600026
https://rfos.fon.bg.ac.rs/handle/123456789/96
Appears in Collections:Doktorati

Files in This Item:
File Description SizeFormat 
92.pdf3.14 MBAdobe PDFThumbnail
View/Open
Show full item record

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons