Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/1301
Full metadata record
DC FieldValueLanguage
dc.creatorKoskela, Pekka
dc.creatorLammi, Paivi
dc.creatorTodorčević, Vesna
dc.date.accessioned2023-05-12T10:49:20Z-
dc.date.available2023-05-12T10:49:20Z-
dc.date.issued2014
dc.identifier.issn0012-9593
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/1301-
dc.description.abstractWe characterize Gromov hyperbolicity of the quasihyperbolic metric space (Omega, k) by geometric properties of the Ahlfors regular length metric measure space (Omega, d, mu). The characterizing properties are called the Gehring-Hayman condition and the ball-separation condition.en
dc.publisherSociete Mathematique de France
dc.relationAcademy of Finland [131477]
dc.relationinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/174017/RS//
dc.rightsopenAccess
dc.sourceAnnales Scientifiques de l'Ecole Normale Superieure
dc.titleGromov hyperbolicity and quasihyperbolic geodesicsen
dc.typearticle
dc.rights.licenseARR
dc.citation.epage990
dc.citation.issue5
dc.citation.other47(5): 975-990
dc.citation.rankaM21
dc.citation.spage975
dc.citation.volume47
dc.identifier.doi10.24033/asens.2231
dc.identifier.fulltexthttp://prototype2.rcub.bg.ac.rs/bitstream/id/164/1297.pdf
dc.identifier.rcubconv_3206
dc.identifier.scopus2-s2.0-84914166436
dc.identifier.wos000346689300003
dc.type.versionpublishedVersion
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.openairetypearticle-
Appears in Collections:Radovi istraživača / Researchers’ publications
Files in This Item:
File Description SizeFormat 
1297.pdf791.03 kBAdobe PDFThumbnail
View/Open
Show simple item record

SCOPUSTM   
Citations

10
checked on Nov 17, 2025

Download(s)

6
checked on Dec 28, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.