Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/1566
Full metadata record
DC FieldValueLanguage
dc.creatorVan Poucke, Sven
dc.creatorZhang, Zhongheng
dc.creatorRoest, Mark
dc.creatorVukićević, Milan
dc.creatorBeran, Maud
dc.creatorLauwereins, Bart
dc.creatorZheng, Ming-Hua
dc.creatorHenskens, Yvonne
dc.creatorLance, Marcus
dc.creatorMarcus, Abraham
dc.date.accessioned2023-05-12T11:02:48Z-
dc.date.available2023-05-12T11:02:48Z-
dc.date.issued2016
dc.identifier.issn0025-7974
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/1566-
dc.description.abstractPlatelet function can be quantitatively assessed by specific assays such as light-transmission aggregometry, multiple-electrode aggregometry measuring the response to adenosine diphosphate (ADP), arachidonic acid, collagen, and thrombin-receptor activating peptide and viscoelastic tests such as rotational thromboelastometry (ROTEM). The task of extracting meaningful statistical and clinical information from high-dimensional data spaces in temporal multivariate clinical data represented in multivariate time series is complex. Building insightful visualizations for multivariate time series demands adequate usage of normalization techniques. In this article, various methods for data normalization (z-transformation, range transformation, proportion transformation, and interquartile range) are presented and visualized discussing the most suited approach for platelet function data series. Normalization was calculated per assay (test) for all time points and per time point for all tests. Interquartile range, range transformation, and z-transformation demonstrated the correlation as calculated by the Spearman correlation test, when normalized per assay (test) for all time points. When normalizing per time point for all tests, no correlation could be abstracted from the charts as was the case when using all data as 1 dataset for normalization.en
dc.publisherLippincott Williams & Wilkins, Philadelphia
dc.relationSNSF Joint Research project (SCOPES) [IZ73Z0_152415]
dc.rightsopenAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceMedicine
dc.subjectthromboelastometryen
dc.subjectplateletsen
dc.subjectnormalizationen
dc.subjectmultivariateen
dc.subjecthigh-dimensionalen
dc.subjectdata spaceen
dc.subjectaggregometryen
dc.titleNormalization methods in time series of platelet function assays A SQUIRE compliant studyen
dc.typearticle
dc.rights.licenseBY
dc.citation.issue28
dc.citation.other95(28): -
dc.citation.rankM22
dc.citation.volume95
dc.identifier.doi10.1097/MD.0000000000004188
dc.identifier.fulltexthttp://prototype2.rcub.bg.ac.rs/bitstream/id/330/1562.pdf
dc.identifier.pmid27428217
dc.identifier.rcubconv_1842
dc.identifier.scopus2-s2.0-84979996264
dc.identifier.wos000380767200040
dc.type.versionpublishedVersion
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Radovi istraživača / Researchers’ publications
Files in This Item:
File Description SizeFormat 
1562.pdf614.82 kBAdobe PDFThumbnail
View/Open
Show simple item record

SCOPUSTM   
Citations

7
checked on Nov 17, 2025

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons