Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/1566
Title: Normalization methods in time series of platelet function assays A SQUIRE compliant study
Authors: Van Poucke, Sven
Zhang, Zhongheng
Roest, Mark
Vukićević, Milan 
Beran, Maud
Lauwereins, Bart
Zheng, Ming-Hua
Henskens, Yvonne
Lance, Marcus
Marcus, Abraham
Keywords: thromboelastometry;platelets;normalization;multivariate;high-dimensional;data space;aggregometry
Issue Date: 2016
Publisher: Lippincott Williams & Wilkins, Philadelphia
Abstract: Platelet function can be quantitatively assessed by specific assays such as light-transmission aggregometry, multiple-electrode aggregometry measuring the response to adenosine diphosphate (ADP), arachidonic acid, collagen, and thrombin-receptor activating peptide and viscoelastic tests such as rotational thromboelastometry (ROTEM). The task of extracting meaningful statistical and clinical information from high-dimensional data spaces in temporal multivariate clinical data represented in multivariate time series is complex. Building insightful visualizations for multivariate time series demands adequate usage of normalization techniques. In this article, various methods for data normalization (z-transformation, range transformation, proportion transformation, and interquartile range) are presented and visualized discussing the most suited approach for platelet function data series. Normalization was calculated per assay (test) for all time points and per time point for all tests. Interquartile range, range transformation, and z-transformation demonstrated the correlation as calculated by the Spearman correlation test, when normalized per assay (test) for all time points. When normalizing per time point for all tests, no correlation could be abstracted from the charts as was the case when using all data as 1 dataset for normalization.
URI: https://rfos.fon.bg.ac.rs/handle/123456789/1566
ISSN: 0025-7974
Appears in Collections:Radovi istraživača / Researchers’ publications

Files in This Item:
File Description SizeFormat 
1562.pdf614.82 kBAdobe PDFThumbnail
View/Open
Show full item record

SCOPUSTM   
Citations

7
checked on Nov 17, 2025

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons