Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/1830
Full metadata record
DC FieldValueLanguage
dc.creatorMilošević, Pavle
dc.creatorJelinek, Srđan
dc.creatorRakićević, Aleksandar
dc.creatorPoledica, Ana
dc.date.accessioned2023-05-12T11:16:19Z-
dc.date.available2023-05-12T11:16:19Z-
dc.date.issued2018
dc.identifier.issn1451-4397
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/1830-
dc.description.abstractProblem prepoznavanja lica se u poslednjih dvadeset godina smatra jednim od najaktuelnijih i najbitnijih. Ovaj problem suštinski se svodi na probleme identifikacije i verifikacije osobe sa digitalne slike ili video signala. U ovom radu veštačke neuronske mreže i metoda nosećih vektora primenjene su kao klasifikatori pri rešavanju problema identifikacije lica. Dalje, ispitivano je koji algoritam ekstrakcije podataka iz slike je bolje koristiti uz koji klasifikator. Na kraju, analizirano je da li normalizacija osvetljenja ima značajan uticaj na rezultate identifikacije. Eksperiment je izvršen na često korišćenoj AT&T bazi slika osoba. Iako su dobijeni zadovoljavajući rezultati za obe klasifikacione metode, metoda nosećih vektora se pokazala kao nešto bolja na ovom problemu.sr
dc.description.abstractThe face recognition problem is one of the most challenging problems in the last twenty years. This problem may come down on identifying or verifying a person from a digital image or a video frame. In this paper, artificial neural networks and support vector machines are used as classifiers to solve a problem of face identification. Further, we aim to investigate which feature extraction algorithm is more suitable to be used along with which classifier. Finally, we analyze if the illumination normalization has a significant influence to identification results. The experiment is performed on the well-known AT&T image database. Although the obtained results are satisfactory for both classification methods, support vector machines proved to be slightly better for solving this problem.en
dc.publisherUniverzitet u Beogradu - Fakultet organizacionih nauka, Beograd
dc.rightsopenAccess
dc.sourceInfo M
dc.subjectveštačke neuronske mrežesr
dc.subjectTan-Trigs normalizacija osvetljenjasr
dc.subjectmetoda nosećih vektorasr
dc.subjectlinearni binarni paternisr
dc.subjectidentifikacija licasr
dc.subjecthistogram orijentisanih gradijenatasr
dc.subjectvector support machineen
dc.subjectTan-Triggs ilumination normalizationen
dc.subjectlinear binary patternsen
dc.subjecthistogram of oriented gradientsen
dc.subjectface identificationen
dc.subjectartificial neural networksen
dc.titlePrimena neuronskih mreža i metode nosećih vektora za identifikaciju licasr
dc.titleApplication of neural networks and support vector machines for face identificationen
dc.typearticle
dc.rights.licenseARR
dc.citation.epage25
dc.citation.issue66
dc.citation.other17(66): 20-25
dc.citation.rankM53
dc.citation.spage20
dc.citation.volume17
dc.identifier.rcubconv_758
dc.type.versionpublishedVersion
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Radovi istraživača / Researchers’ publications
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.