Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/1830
Title: Primena neuronskih mreža i metode nosećih vektora za identifikaciju lica
Application of neural networks and support vector machines for face identification
Authors: Milošević, Pavle 
Jelinek, Srđan
Rakićević, Aleksandar 
Poledica, Ana
Keywords: veštačke neuronske mreže;Tan-Trigs normalizacija osvetljenja;metoda nosećih vektora;linearni binarni paterni;identifikacija lica;histogram orijentisanih gradijenata;vector support machine;Tan-Triggs ilumination normalization;linear binary patterns;histogram of oriented gradients;face identification;artificial neural networks
Issue Date: 2018
Publisher: Univerzitet u Beogradu - Fakultet organizacionih nauka, Beograd
Abstract: Problem prepoznavanja lica se u poslednjih dvadeset godina smatra jednim od najaktuelnijih i najbitnijih. Ovaj problem suštinski se svodi na probleme identifikacije i verifikacije osobe sa digitalne slike ili video signala. U ovom radu veštačke neuronske mreže i metoda nosećih vektora primenjene su kao klasifikatori pri rešavanju problema identifikacije lica. Dalje, ispitivano je koji algoritam ekstrakcije podataka iz slike je bolje koristiti uz koji klasifikator. Na kraju, analizirano je da li normalizacija osvetljenja ima značajan uticaj na rezultate identifikacije. Eksperiment je izvršen na često korišćenoj AT&T bazi slika osoba. Iako su dobijeni zadovoljavajući rezultati za obe klasifikacione metode, metoda nosećih vektora se pokazala kao nešto bolja na ovom problemu.
The face recognition problem is one of the most challenging problems in the last twenty years. This problem may come down on identifying or verifying a person from a digital image or a video frame. In this paper, artificial neural networks and support vector machines are used as classifiers to solve a problem of face identification. Further, we aim to investigate which feature extraction algorithm is more suitable to be used along with which classifier. Finally, we analyze if the illumination normalization has a significant influence to identification results. The experiment is performed on the well-known AT&T image database. Although the obtained results are satisfactory for both classification methods, support vector machines proved to be slightly better for solving this problem.
URI: https://rfos.fon.bg.ac.rs/handle/123456789/1830
ISSN: 1451-4397
Appears in Collections:Radovi istraživača / Researchers’ publications

Show full item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.