Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/2938
Full metadata record
DC FieldValueLanguage
dc.creatorAleksandra, Sretenović-
dc.creatorMarija, Đukić-
dc.creatorAna, Pajić Simović-
dc.creatorOgnjen, Pantelić-
dc.date.accessioned2025-02-13T07:05:10Z-
dc.date.available2025-02-13T07:05:10Z-
dc.date.issued2024-09-
dc.identifier.isbn978-608-65468-4-7-
dc.identifier.urihttps://rfos.fon.bg.ac.rs/handle/123456789/2938-
dc.description.abstractThis paper explores the application of machine learning in predicting obesity, a significant global health concern. We specifically examine the impact of three feature selection methods — InfoGain, Chi-squared, and ReliefF, on the performance of classification models using Random Forest and Logistic Regression algorithms. By analyzing an obesity dataset categorized into three and seven classes, we identify key features that contribute to model accura-cy. The models are evaluated using several metrics: Accuracy, Precision, Re-call, Specificity, Sensitivity, and Balanced Accuracy. The findings highlight the role of feature selection in model performance, with the Random Forest algorithm achieving the highest accuracy rate of 96.7%.sr
dc.language.isoensr
dc.publisherSociety of Information and Communication Technologies (ICT-ACT)sr
dc.rightsopenAccesssr
dc.subjectfeature selectionsr
dc.subjectmachine learningsr
dc.subjectclassification algorithmssr
dc.subjectobesitysr
dc.titleFeature Selection Methods In Obesity Prediction: An Experimental Analysissr
dc.typeconferenceObjectsr
dc.rights.licenseARRsr
dc.citation.epage139-
dc.citation.spage125-
dc.identifier.fulltexthttp://prototype2.rcub.bg.ac.rs/bitstream/id/4225/bitstream_4225.pdf
dc.type.versionpublishedVersionsr
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairetypeconferenceObject-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Radovi istraživača / Researchers’ publications
Files in This Item:
File Description SizeFormat 
bitstream_4225.pdf8.83 MBAdobe PDFThumbnail
View/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.