Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/430
Title: Littlewood-Paley inequalities in uniformly convex and uniformly smooth Banach spaces
Authors: Avetisyan, Karen
Đorđević, Olivera 
Pavlović, Miroslav
Keywords: uniform p-smoothness;uniform p-convexity;Littlewood-Paley inequality;harmonic function;hardy space;Banach space
Issue Date: 2007
Publisher: Academic Press Inc Elsevier Science, San Diego
Abstract: It is proved that the inequality delta(X) (epsilon) >= c epsilon(p) p >= 2, where delta(X) is the modulus of convexity of X, is sufficient and necessary for the inequality integral parallel to del f(z) parallel to(p) (1-vertical bar z vertical bar)(p-1) dA(z) LT = C(parallel to f parallel to(p)(p.X) - parallel to f(0) parallel to(p)), where f is an X-valued harmonic function belonging to the Hardy space h(P)(X). The reverse inequality (1 LT p LT = 2) holds if and only if rho X (tau) LT = C tau(p) P, where rho X is the modulus of smoothness of X.
URI: https://rfos.fon.bg.ac.rs/handle/123456789/430
ISSN: 0022-247X
Appears in Collections:Radovi istraživača / Researchers’ publications

Files in This Item:
File Description SizeFormat 
426.pdf
  Restricted Access
154.87 kBAdobe PDFView/Open    Request a copy
Show full item record

SCOPUSTM   
Citations

10
checked on Nov 17, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.