Please use this identifier to cite or link to this item: https://rfos.fon.bg.ac.rs/handle/123456789/954
Title: Boundary modulus of continuity and quasiconformal mappings
Authors: Arsenović, Miloš
Todorčević, Vesna
Nakki, Raimo
Keywords: Quasiconformal mapping;modulus of continuity
Issue Date: 2012
Publisher: Suomalainen Tiedeakatemia, Helsinki
Abstract: Let D be a bounded domain in R-n, n >= 2, and let f be a continuous mapping of (D) over bar into R-n which is quasiconformal in D. Suppose that vertical bar f(x) - f(y)vertical bar LT = omega(vertical bar x-y vertical bar) for all x and y in partial derivative D, where omega is a non-negative non-decreasing function satisfying omega(2t) LT = 2w(t) for t >= 0. We prove, with an additional growth condition on omega, that vertical bar f(x) - f(y)vertical bar LT = C max{omega(vertical bar x - y vertical bar), vertical bar x - y vertical bar(alpha)} for all x, y is an element of D, where alpha = K-1(f)(1/(1-n)).
URI: https://rfos.fon.bg.ac.rs/handle/123456789/954
ISSN: 1239-629X
Appears in Collections:Radovi istraživača / Researchers’ publications

Files in This Item:
File Description SizeFormat 
950.pdf433.76 kBAdobe PDFThumbnail
View/Open
Show full item record

SCOPUSTM   
Citations

6
checked on Nov 17, 2025

Page view(s)

12
checked on Dec 28, 2025

Download(s)

2
checked on Dec 28, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.