Please use this identifier to cite or link to this item:
https://rfos.fon.bg.ac.rs/handle/123456789/1830| Title: | Primena neuronskih mreža i metode nosećih vektora za identifikaciju lica Application of neural networks and support vector machines for face identification |
Authors: | Milošević, Pavle Jelinek, Srđan Rakićević, Aleksandar Poledica, Ana |
Keywords: | veštačke neuronske mreže;Tan-Trigs normalizacija osvetljenja;metoda nosećih vektora;linearni binarni paterni;identifikacija lica;histogram orijentisanih gradijenata;vector support machine;Tan-Triggs ilumination normalization;linear binary patterns;histogram of oriented gradients;face identification;artificial neural networks | Issue Date: | 2018 | Publisher: | Univerzitet u Beogradu - Fakultet organizacionih nauka, Beograd | Abstract: | Problem prepoznavanja lica se u poslednjih dvadeset godina smatra jednim od najaktuelnijih i najbitnijih. Ovaj problem suštinski se svodi na probleme identifikacije i verifikacije osobe sa digitalne slike ili video signala. U ovom radu veštačke neuronske mreže i metoda nosećih vektora primenjene su kao klasifikatori pri rešavanju problema identifikacije lica. Dalje, ispitivano je koji algoritam ekstrakcije podataka iz slike je bolje koristiti uz koji klasifikator. Na kraju, analizirano je da li normalizacija osvetljenja ima značajan uticaj na rezultate identifikacije. Eksperiment je izvršen na često korišćenoj AT&T bazi slika osoba. Iako su dobijeni zadovoljavajući rezultati za obe klasifikacione metode, metoda nosećih vektora se pokazala kao nešto bolja na ovom problemu. The face recognition problem is one of the most challenging problems in the last twenty years. This problem may come down on identifying or verifying a person from a digital image or a video frame. In this paper, artificial neural networks and support vector machines are used as classifiers to solve a problem of face identification. Further, we aim to investigate which feature extraction algorithm is more suitable to be used along with which classifier. Finally, we analyze if the illumination normalization has a significant influence to identification results. The experiment is performed on the well-known AT&T image database. Although the obtained results are satisfactory for both classification methods, support vector machines proved to be slightly better for solving this problem. |
URI: | https://rfos.fon.bg.ac.rs/handle/123456789/1830 | ISSN: | 1451-4397 |
| Appears in Collections: | Radovi istraživača / Researchers’ publications |
Show full item record
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.